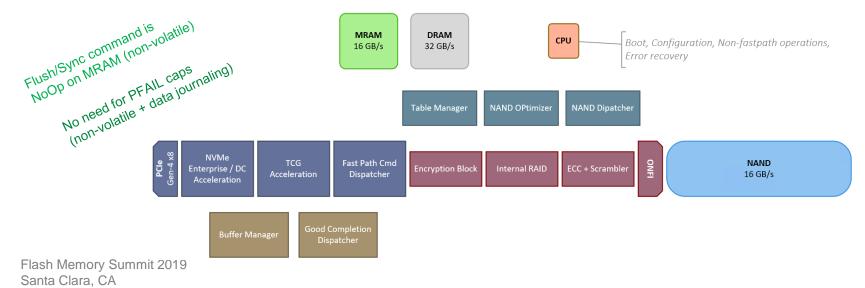


Designing SSD Storage Systems for Low Latency Without Large Outliers

Sebastien Jean, Phison Electronics Imran Hirani, Everspin Technologies

Improving High Reliability Storage

- Advanced storage appliances use two key techniques to improve the reliability of a multi-drive array
 - Journaling (ex: Transaction logging, checksums, data logging)
 - Physical Redundancy (ex: RAID-6, Redundant Power)
- Journaling generally provides three levels of protection with increasingly slower throughput
 - Writeback mode Only the metadata is journaled describing the transaction and filesystem structural changes. User data and metadata are written in parallel and can fall out of sync during a power failure.
 - Ordered mode Forces the data to be written first, serializing the data and journal operations
 - **Journal mode** Will write both the metadata and user data to the journal, then write the user data to the data drives


Improving High Reliability Storage

- Journal data is very short lived, but must be persistent
 - o It has a significant impact on write amplification and is a major contributor to high SSD TBW requirements
 - This forces the use of high Over Provisioning (OP) or high cycling NAND which are both expensive
 - o Moving the journal to dedicated redundant drives consumes slots, power and cooling
- Organizations that must use high reliability storage configurations pay a very high operational cost
- The most effective way of improving the performance of a fully journaling file system is to move the journal off the user data path onto a dedicated redundant storage solution
 - o Journal size tends to be relatively small
 - \circ \quad Still consumes 2-5 slots depending on the type of redundancy that is needed
 - Placing multiple journals from different volume onto one drive-set splits the efficiency improvement and pushes out the latency on every volume in the new "meta set"

Improving High Reliability Storage

- Ideal configuration: a <u>redundant high-speed side-band</u> solution that does <u>not require</u> any additional <u>drive slots</u>
 - o MRAM has very high write bandwidth and program cycles; perfect for data with low tenure like journals
 - o Does not require an FTL, can be used like DRAM, naturally PFAIL capable
 - o Very tight latency distribution that ensures minimal degradation in a RAID environment
 - o Cost is much lower than high P/E NAND or high OP SSD and there is no additional slot overhead

Proof of Concept

- We set up a Linux server with EXT4 set to mode=journal (full journaling)
 - o PS5012-DC SSD as RAID-6
 - PS5012-DC SSD as RAID-6 + PS5012 Journal
 - PS5012-DC SSD as RAID-6 + NVNitro MRAM Journal
- Enterprise deployments tend to be optimized for specific tasks
 - o Transaction Workloads: 4-8K IO, short tenure data, 50/50 read/write
 - o Data Workloads: 64-256K IO, 70/30 read/write
- Experiment 1 Transaction WL
 - o FIO 3.15
 - o Precondition drive with random write until steady-state
 - Measure Transaction Workload for 1 hour
- Experiment 2 Data WL
 - o FIO 3.15
 - o Precondition drive with random write until steady-state
 - o Measure Data Workload for 1 hour

Flash Memory Summit 2019 Santa Clara, CA

		Read	Write
Transaction WL	4K	34%	48%
	8K	26%	12%
	16K	7%	12%
	32K	7%	6%
	64K	10%	7%
	128K	12%	12%
	256K	14%	3%

		Read	Write
Data WL	4K	9%	14%
	8K	6%	4%
	16K	3%	2%
	32K	2%	1%
	64K	30%	27%
	128K	38%	43%
	256K	13%	11%

Proof of Concept

- The data for Experiment 1 & 2 were accidentally run in parallel
 - This resulted in a bimodal distribution (4-8K; 64-256K)
 - CPU loading was only 8% despite have 64 tasks
 - Storage write bandwidth was only pushed to 10%
- Initially this data appeared to be unusable
 - Upon further consideration we realized this represented lightly loaded virtualized servers
 - As the workload increased, these virtual machines would be moved to dedicated hardware

		Read	Write
Transaction WL	4K	34%	48%
	8K	26%	12%
	16K	7%	12%
	32K	7%	6%
	64K	10%	7%
	128K	12%	12%
	256K	14%	3%

		Read	Write
Data WL	4K	9%	14%
	8K	6%	4%
	16K	3%	2%
	32K	2%	1%
	64K	30%	27%
	128K	38%	43%
	256K	13%	11%

٠

Study Results

- Assuming an organization requires RAID-6 with full journaling
 - Despite only using ~10% of the system resources
 - Moving the journal off the data drive increases the R/W IOPS 36%
 - Read 99.99% latency is reduced by 44%
 - Write 99.99% latency is reduced by 75% (E12DC) and 82% (MRAM)
- Higher system loading will amplify the differences between all three configuration
 - \circ Moving the journal off the data media allows the NAND to be used for user IO
 - o MRAM provides PFAIL and can be integrated into an SSD
 - No additional slots required each SSD has its own journal MRAM pool
 - o Journal MRAM can also be configured as RAID
- Next steps
 - 1. Split workloads and increase system stress to 100%
 - 2. Add Flush/Sync operations and Move Data RAID bitmap to journal
 - 3. Produce detailed latency (99.9999%) and Write Amplification analysis
 - 4. Review power study (SSD Journal vs MRAM Journal)

"PUSHING BOUNDARIES" YOUR PCIe GEN-4 SSD LEADER

VISIT US AT BOOTH #219!

Flash Memory Summit 2019 Santa Clara, CA